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Considerable progress has been made in identifying genes that
are involved in the evolution of plant morphologies. Elements of
the ABC model of flower development are conserved throughout
angiosperms, and homologous MADS-box genes function in
gymnosperm reproduction. Candidate gene and mapping
analyses of floral symmetry, sex determination, inflorescence
architecture, and compound leaves provide intriguing glimpses
into the evolution of morphological adaptations.
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Abbreviations
AG AGAMOUS
AP1 APETALA1
ATC Arabidopsis thaliana CENTRORADIALIS homolog
cen centroradialis
CET2 CEN-like gene from tobacco2
CYC CYCLOIDEA
DICH DICHOTOMA
KNOX KNOTTED-like homeobox
LFY LEAFY
PEAFIM PEAFIMBRIATA
PI PISTILLATA
QTL quantitative trait loci
SEP1 SEPALLATA1 
TFL1 TERMINAL FLOWER1
UFO UNUSUAL FLORAL ORGANS

Introduction
Among more than 250 000 extant angiosperm species, taxa
are demarcated by an enormous variety of shoot and root
architectures; leaf shapes; and flower, fruit and seed
forms. The emergence of these morphological differences
correlates (albeit imperfectly) with speciation, whereas the
ecological consequences of variations in plant form offer clues
to the evolution of adaptations. For these and other reasons,
understanding the origin of morphological modifications lies
close to the heart of evolutionary biology.

The elucidation of developmental genetic pathways that
regulate morphogenesis in model species has provided a
new foundation for the study of evolutionary diversification.
By identifying genes that contribute to species variation,
we can analyze the developmental genetic mechanisms of
evolution [1], the historical evolutionary forces that have
driven diversification [2,3], and the molecular basis for
patterns of morphological character transformations among
taxa [4]. In the past several years, studies of flower, inflores-
cence, and leaf development have yielded exciting
glimpses of the genetic basis of morphological evolution in

angiosperms. In this review, we are able to provide only a
whirlwind tour, but several recent articles have provided
overviews and conceptual syntheses of other aspects of the
evolution of plant morphologies [5••,6–10].

Studying the ABCs (or at least the BCs!) of
floral organ identity
Investigations of the molecular evolution of plant develop-
ment have focused almost exclusively on homeotic genes
that are involved in the determination of floral organ
identity. According to the well-known ABC model, three
classes of transcriptional regulators act in combination to
specify sepals (A only), petals (A+B), stamens (B+C), or
carpels (C only). In Arabidopsis thaliana, A-function is
conferred by APETALA1 (AP1) and AP2, B-function by
AP3 and PISTILLATA (PI), and C-function by AGAMOUS
(AG). AP1, AP3, PI, and AG are members of the MADS-box
gene family; AP2 belongs to a gene family that is unique
to plants (see [11] for review). Recent research has sought
to assess the applicability of the ABC model throughout
the angiosperms and to understand its relationship to
gymnosperm reproductive development.

The specification of petals, stamens, and carpels in
Arabidopsis requires the additional MADS-box proteins,
SEPALLATA1 (SEP1), SEP2, and SEP3 [12•]. Related
genes serve similar functions in other eudicots [12•,13]. In
Arabidopsis, the ectopic expression of SEP3 and appropriate
combinations of homeotic genes convert rosette leaves to
petaloid [14•] or staminoid organs [15••]. These results support
the hypothesis that all floral organs represent modifications
of a leaf-like structure, a central tenet of the ABC model.
They also raise the intriguing possibility that SEP-like
genes play important roles in restricting the activity of
floral morphogenetic programs to reproductive organs.

Comparative expression studies indicate that the specifi-
cation of stamen and carpel identity by B- and C-function
genes is conserved throughout angiosperms ([16,17,18••];
see [19] for review), which is consistent with the hypothesis
that these organs evolved only once. Analyses of orthologous
genes in gnetophytes and conifers suggest that, in the
ancestor of seed plants, C-function genes may have specified
reproductive development, whereas B-function genes
differentiated between male and female reproductive
organs (see [9] for review). MADS-box genes have also been
isolated from pteridophytes (see [9] for review), lycopods
[20], and bryophytes [21], but no unambiguous orthologs
of the floral homeotic genes have been found. If more
exhaustive sampling fails to uncover orthologs in the basal
land plants, it seems reasonable to hypothesize that the
diversification of MADS-box genes played a role in the
evolution of reproductive morphologies that are associated
with heterospory.
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Analyses of the B-function genes across the angiosperms
have stimulated interest in testing two contrasting
hypotheses regarding the evolution of petals: first, an
ancestral petaloid organ may have arisen early in
angiosperm diversification or, second, there may have
been multiple origins of petaloid organs. In lower eudicots,
AP3 and PI homologs show variations in gene expression
that could support a ‘separate-origins’ hypothesis [17].
Results from studies in grasses (Figure 1; [22••,23]),
however, indicate that a petal-specifying program that uses
homologs of AP3 and PI could predate the divergence of
the monocot and eudicot lineages. In basal dicots, the
considerable diversity in the spatial and temporal patterns
of B-function gene expression is difficult to reconcile
with a single, ancestral petal-specifying program [18••].
Understanding the origin(s) of petals will require additional
sampling of taxa throughout the basal angiosperms to
clarify whether particular expression variants are typical of
larger taxonomic groups or are more recently evolved.
Determining when identity-specifying mechanisms became
fixed within different lineages may also prove important.
Kramer and Irish [18••] speculate that developmental
pathways leading to a four-whorled flower, regulated in
part by the ABC genes, became canalized in ancestors of

the higher eudicot clade. By buffering the effects of
mutations on organ-identity specification while permitting
the accumulation of genetic variation [24•], this canalization
may have facilitated the group’s subsequent diversification
of flower size and shape [6,18••].

At this point, insufficient data exist to allow an assessment
of the evolutionary conservation of perianth-specifying
A-function genes. In several monocot and dicot species,
putative orthologs of AP1 are expressed in floral meristems
as they are in Arabidopsis [23,25,26]. Nevertheless, genes
that are clearly related to AP1 also show divergent
expression in plants [16]. To date, ap1 mutant phenotypes
affecting sepal and petal identity have only been observed
in Arabidopsis. The universality of AP2 function in sepal
and petal specification is even more poorly established. An
AP2 ortholog has recently been characterized in Petunia
hybrida, but no loss-of-function phenotype was observed
for this gene [27]. The identification of an AP2 ortholog
in the gymnosperm Picea abies (spruce) may shed light on
the ancestral functions of this gene family [28]. Further
insight into the evolution of sepals and petals depends on
clarification of the roles of A-function genes in the perianths
of diverse species.

Molecular phylogenetic studies show that duplication of
the floral homeotic genes is quite common. For example,
in Zea mays (maize), there are three PI [29] and two AG
homologs [30], whereas in Gerbera hybrida there are two
AP3 and two AG homologs [16]. AP3 and PI duplicates also
exist in the lower eudicots and basal angiosperms [17,18••].
Detailed functional analyses of these genes should provide
a wealth of information about the importance of gene
duplication in plant morphological diversification.

Refinements of floral morphology with
adaptive significance
Two common adaptations of floral morphology, unisexuality
and zygomorphy (Figure 2), have been studied extensively
using developmental genetic approaches. Unisexual flowers,
in which stamen or carpel development is selectively
repressed, are thought to have evolved independently in
many angiosperm lineages (see [31] for review). Several
studies fail to support the hypothesis that the evolution of
unisexuality involves alterations in the expression patterns
of B- or C-function genes ([32]; see [31] for review).
Analyses of mutants in maize [22••] and G. hybrida [13,16],
however, demonstrate that abortion programs affect only
organs of the appropriate identity. Thus, in some species,
the evolution of unisexuality may require the establishment
of new interactions between the floral homeotic genes and
pathways involved in growth arrest. Additional mechanisms
are also likely as, for example, organ abortion in Cucumis
sativus (cucumber) is restricted to particular whorls of the
flower [33•]. Better understanding of the evolutionary
mechanisms involved in sex determination can be achieved
by studying clades containing unisexual and bisexual
species. A recent phylogenetic study shows that, in some
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Figure 1

Loss-of-function at Silky1, a maize homolog of AP3 and PI, results in
homeotic transformations of floral organs similar to those observed in
B-class mutants of Arabidopsis. (a) A wildtype tassel spikelet with two
male florets. Each floret consists of a palea (P), a lemma (L), three
lodicules (Lo), three stamens (S), and an aborted pistil. (b) Close up of
a wildtype floret. A fleshy lodicule is visible at the base of the stamens.
(c) A silky1 tassel spikelet with two florets. The stamens are
transformed to pistilloid structures (TS). The transformed lodicules
(TLo) resemble the lemma and palea. Note that the transformed
stamens do not abort, even though they are composed of pistil-like
tissues. (d) Close up of silky1 transformed stamens and transformed
lodicule. Photos courtesy of Barbara Ambrose, University of California
San Diego. Images reproduced from [22••] with permission.
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taxa, polyploidization and breakdown of self-incompatibility
seem to favor the evolution of sex-determining programs
[34], but other selective pressures certainly exist.

Transitions between zygomorphic and actinomorphic
flowers have also occurred multiple times in the history
of the angiosperms. Zygomorphy (i.e. bilateral symmetry)
is important in adaptations to animal pollination. In
Antirrhinum majus (snapdragon), the putative transcriptional
regulators CYCLOIDEA (CYC) and DICHOTOMA (DICH)
are required in dorsal tissues for zygomorphic development
(see [35] for review). Inactivation of a CYC ortholog has
been implicated in reversion to actinomorphy within a
population of Linaria vulgaris [36]. In the Gesneriaceae
family, however, multiple reversions to actinomorphy do
not appear to be associated with changes in the number of
expressed CYC homologs [37]. Until recently, CYC homologs
had been studied only in the Lamiales, an ancestrally 
zygomorphic order. TCP1 (for TB1 CYC PCF domain1), a CYC
homolog in Arabidopsis, is expressed at the adaxial base of
floral and axillary meristems [38]. This observation hints
that the dorsalizing functions of CYC and DICH may have
evolved from a more general role in branch development.

Studies of the monkeyflowers Mimulus cardinalis and
M. lewisii show that even subtle variations in floral morphology
can be ecologically and evolutionarily significant. The
flowers of these two species differ in petal lobe shape
and orientation, style and anther height, and pigmentation.
Although interfertile, these species rarely hybridize

naturally. To test the hypothesis that floral morphology
contributes to reproductive isolation by encouraging
pollinator specificity, Bradshaw and coworkers [39]
mapped quantitative trait loci (QTL) for floral variation in
Mimulus hybrids. For most of the 11 traits studied, several
QTL were identified, and at least one QTL explained
more than 25% of the total trait phenotypic variance [39].
In field studies of the hybrids, possession of QTL associated
with corolla morphology was correlated with the frequency
of visitation by bird or bee pollinators [40]. Similar analyses
are likely to be useful in understanding intraspecific
variation in floral morphology. A recent quantitative genetic
study found significant differences in floral traits among
Arabidopsis ecotypes and recombinant inbred lines
(Figure 3), and a mapping experiment identified QTL
affecting floral-organ size and shape [41•].

The inflorescence: when and where to 
make flowers
Variation in inflorescence architecture has long been
recognized to have adaptive significance [42]. Among the
scores of genes involved in the control of flowering in
Arabidopsis, TERMINAL FLOWER1 (TFL1) and LEAFY
(LFY) play particularly important roles in inflorescence
architecture. TFL1, a putative kinase inhibitor, maintains
indeterminacy of inflorescence meristems and influences
the number of secondary inflorescences formed. LFY, a
transcriptional regulator, promotes floral meristem identity
and regulates expression of the floral homeotic genes
(see [43] for review). Analyses of TFL1 and LFY
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Gerbera hybrida inflorescences include bisexual and unisexual flowers
that also differ in floral symmetry. (a) The gerbera inflorescence
contains ray (R), trans (T), and disc (D) florets. (b) Disk florets, which
are bisexual, contain fertile stamens (S) and an inferior ovary (O). The
lobes of the tubular corolla (Co) are similar in size, resulting in a nearly
actinomorphic flower. The style (St) has not yet elongated in this floret.
(c) Trans florets are unisexual due to the abortion of anthers relatively

late in development. Unequal growth of the corolla lobes yields a
zygomorphic flower. The ovary in (c) is outside the field of view, and the
style is hidden by the corolla lobes. (d,e) Ray florets produce infertile
stamens and strongly zygomorphic corollas. In (d), the two smaller
corolla lobes and part of the corolla have been removed to reveal the
filamentous remnants of the aborted stamens (AS). The boxed portion
is enlarged in (e). (b–d) are shown at the same magnification.



homologs in other angiosperms have begun to address
the contribution of these genes to interspecific differences
in inflorescence architecture.

The terminal flower phenotype of centroradialis (cen)
mutants of Antirrhinum [44] initially suggested that TFL1
homologs might promote inflorescence indeterminacy in
divergent higher eudicots. The absence of expression of
similar genes in the determinate inflorescence meristem of
Nicotiana tabacum (tobacco) appeared to bolster support for a
role for CEN/TFL1 homologs in inflorescence indeterminacy
[45]. However, this interpretation has been challenged by a
recent phylogenetic analysis showing that TFL1 and CEN
are paralogs rather than orthologs [46••]. Furthermore, the
members of the CEN clade play diverse roles in plant
development. The CEN clade includes ATC (Arabidopsis thaliana
CENTRORADIALIS homolog) [46••], SELF-PRUNING (SP)
from Lycopersicon esculentum (tomato) [47], CET2 (CEN-like
gene from tobacco2) and CET4 [45]. These orthologs exhibit a
variety of gene expression patterns, and their loss-of-function
phenotypes indicate that ATC and SP are not involved in
inflorescence architecture [45,46••,47]. Functional analyses
of additional genes in the TFL1 clade have not been published,
but several apparent orthologs have been isolated: LpTFL1
from the monocot Lolium perenne (perennial ryegrass) [48];
and CET5 and CET6 from tobacco [45]. Better understanding
of the evolution of inflorescence indeterminacy will
require analyses of TFL1 and CEN orthologs in a wider
range of species. Because the constitutive expression
phenotypes of TFL1, ATC, CEN, and LpTFL1 in Arabidopsis
are similar [46••,48], it is likely that their functional divergence
primarily involved changes in gene expression rather than
in protein structure.

The expression patterns of LFY orthologs vary considerably
in the taxa studied so far, and the functional consequences
of these differences are still unclear. Shu and coworkers
[49•] hypothesize that the expansion of LFY expression
into the inflorescence meristem accounts for the occurrence
of rosette flowering in Jonopsidium acaule (violet cress), but
a causal relationship has not been demonstrated (Figure 4).
The expression pattern of LFY homologs in grasses contrasts
strongly with its upregulation early in flower development
in Arabidopsis. ltLFY from Lolium temulentum (ryegrass) is
expressed relatively late in floral development [26], whereas
RFL, the FLORICAULA (FLO)–LFY homolog of Oryza
sativa (rice), is expressed in the developing panicle but not
in the florets [50]. The apparent diversity of LFY expression
is surprising given this gene’s crucial role in regulating the
floral homeotic genes in Arabidopsis. 

LFY homologs have also been implicated in one of the
enduring mysteries of angiosperm evolution: how male
and female reproductive organs came to be united in a sin-
gle structure. Frohlich and Parker [51••] hypothesize in the
‘Mostly Male Theory’ that the angiosperm flower is derived
from a male gymnosperm cone, with the carpel evolving from
microsporophylls that produced ectopic ovules. As support for
this hypothesis, they note that the single LFY locus typical
of angiosperm genomes is similar to a Pinus radiata gene
that is expressed only in male cones. The angiosperm lineage
has apparently lost a second LFY-like gene that is expressed
more broadly in gymnosperms. Frohlich and Parker [51••]
predict that other genes active early in floral development
should also have homologs expressed in male organs during
gymnosperm reproductive development. Although this
theory is intriguing, it rests on rudimentary knowledge of the
function of either LFY homolog in gymnosperms.

The evolution of vegetative morphologies:
compound leaf development
Although we’ve learned a great deal about the evolution of
reproductive morphologies, recent genetic studies of
vegetative morphological evolution have largely concentrated
on mechanisms controlling compound leaf development.
It is widely hypothesized that compound leaves evolved
independently in many families, but it is also possible that
an ancestral developmental program may have been
repeatedly suppressed and resurrected in some clades [52].
The evolution of compound leaves in tomato involved
expansion of class I KNOTTED-like homeobox (KNOX) gene
activity into leaf primordia. Although KNOX gene expression
is excluded from leaf primordia in species with simple
leaves, tomato leaves express KNOX genes during their
ontogeny, and overexpression of KNOX genes intensifies
tomato leaf dissection (see [52] for review). Interestingly,
when mutations in KNOX repressors permit KNOX
expression in Arabidopsis leaves, lobed leaves develop
[53•,54,55]. It is tempting to speculate that the regulation
of KNOX-mediated effects on leaf margin development
provides an easily modified mechanism for generating a
variety of degrees of leaf-blade dissection.
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Figure 3

Intraspecific variation in floral morphology in Arabidopsis thaliana.
Columbia x Landsberg erecta recombinant inbred lines show significant
quantitative differences in flower mass, organ size, and organ shape.
Photo courtesy of Thomas Juenger, University of California Berkeley.
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Other pathways must also be capable of causing compound
leaf development, as pea leaves do not express KNOX
genes [56]. In pea, UNIFOLIATA, a LFY ortholog [57•], and
PEA FIMBRIATA (PEAFIM), an ortholog of Arabidopsis
UNUSUAL FLORAL ORGANS (UFO) [58•], are required
for compound leaf development and elaboration. Both
LFY and UFO regulate AP3 expression in Arabidopsis
flowers via poorly understood interactions [59], and it is
possible that elements of a floral development pathway have
been co-opted in the evolution of these compound leaves.

Conclusions
Despite a decade of hard work and some truly intriguing
results, genetic analyses of plant morphological evolution
are still in their infancy. Most studies to date have focused
on comparative expression analyses of candidate genes [60•]
identified through molecular genetics. Judicious selection
of candidate genes requires careful evaluation of a trait’s
ontogeny and thorough understanding of the candidate
gene’s mutant phenotypes. Although changes in morphology
can certainly be wrought by changes in the spatial or
temporal expression of genes, reverse transcription PCR
(RT-PCR) and in situ hybridization may not reveal the
whole story. More exhaustive means of analyzing gene
function, such as microarrays, should be informative.
Establishing causal relationships between molecules and
morphological variants will require comparative studies of
closely related yet divergent taxa combined with molecular
phylogenetic and population genetic analyses.

Map-based approaches, including QTL mapping, can
more directly identify genes responsible for morphological
diversification, as was exemplified by Doebley and
coworkers with teosinte branched1 in maize (see [1] for
review). Because mapping requires interfertile species, is
labor intensive, and can be technically challenging, its
utility in interspecific studies may be limited. Intraspecific
mapping in Arabidopsis and other model plants, however,

should allow us to identify new candidate genes for inter-
specific studies by assigning functions to genes that may not
have been uncovered through molecular genetic approaches.
More importantly, as morphological diversity between
species originates from variation within species, intraspecific
studies of natural variation will provide insight into the
potential origins of macroevolutionary transformations [61•].

Future genetic studies of plant morphological evolution
will (and should) rely on complementary candidate gene
and mapping approaches. We hope that the lessons learned
from recent studies will soon be applied to a much broader
range of questions. A world of biological diversity is
waiting to be understood, and leaf, shoot, and root evolution
(as well as non-ABC aspects of floral development) are
crying out for your attention!
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Figure 4. Modification of inflorescence
architecture within the Brassicaceae. 
(a) In Arabidopsis thaliana, as in most
members of the Brassicaceae, the primary
inflorescence (1°) elongates from the basal
rosette and bears many flowers that lack
subtending bracts. Secondary inflorescences
(2°) emerge from the axils of cauline leaves. 
(b) In striking contrast, Jonopsidium acaule
produces single flowers (identified by arrows)
in the axils of rosette leaves. (b) Photo in
courtesy of Darlyne Murawski and David
Baum, University of Wisconsin.
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